DMFC Performance of Polymer Electrolyte Membranes Prepared from a Graft-Copolymer Consisting of a Polysulfone Main Chain and Styrene Sulfonic Acid Side Chains
نویسندگان
چکیده
Polymer electrolyte membranes (PEMs) for direct methanol fuel cell (DMFC) applications were prepared from a graft-copolymer (PSF-g-PSSA) consisting of a polysulfone (PSF) main chain and poly(styrene sulfonic acid) (PSSA) side chains with various average distances between side chains (Lav) and side chain lengths (Lsc). The polymers were synthesized by grafting ethyl p-styrenesulfonate (EtSS) on macro-initiators of chloromethylated polysulfone with different contents of chloromethyl (CM) groups, and by changing EtSS content in the copolymers by using atom transfer radical polymerization (ATRP). The DMFC performance tests using membrane electrode assemblis (MEAs) with the three types of the PEMs revealed that: a PSF-g-PSSA PEM (SF-6) prepared from a graft copolymer with short average distances between side chains (Lav) and medium Lsc had higher DMFC performance than PEMs with long Lav and long Lsc or with short Lav and short Lsc. SF-6 had about two times higher PDmax (68.4 mW/cm2) than Nafion® 112 at 30 wt % of methanol concentration. Furthermore, it had 58.2 mW/cm2 of PDmax at 50 wt % of methanol concentration because of it has the highest proton selectivity during DMFC operation of all the PSF-g-PSSA PEMs and Nafion® 112.
منابع مشابه
Functionalized and Electrospun Polymeric Materials as High-Performance Membranes for Direct Methanol Fuel Cell: A Review
Proton exchange membranes (PEM) for a direct methanol fuel cell (DMFC) have main drawbacks which are methanol permeability, reduced proton conductivity and the cost of the membrane. This paper reviews different polymeric materials such as fluorinated, non-fluorinated, acid-base complex, and composite membranes for DMFC. Currently, nonfluorinated membranes gain a lot of atte...
متن کاملRemoval of Methylene Blue from Water by Polyacrylonitrile Co Sodium Methallylsulfonate Copolymer (AN69) and Polysulfone (PSf) Synthetic Membranes
Polyacrylonitrile-co-sodium methallylsulfonate copolymer (AN69) and polysulfone (PSf) synthetic membranes were prepared and used for the removal of methylene blue (MB) from water. Atomic Force Microscopy (AFM), Ionic exchange capacity (IEC), and Swelling ratio (Sr) were employed to determine the membrane characteristics. pH, membrane composition and initial dye concentration were used for t...
متن کاملFabrication of Nanofiltration Membrane from Polysulfone Ultrafiltration Membrane Via Photo olymerization
UV-induced grafting technique was used as a flexible method for surface modification of Polysulfone (PSf) ultrafiltration (UF) membranes in order to prepare hydrophilic nanofiltration (NF) membranes. Flat sheet Polysulfone (PSf) ultrafiltration membranes were prepared via phase inversion method. N-methylene-2-pyrrolidone (NMP) and polyethylene glycol (PEG) of three different molecular weights (...
متن کاملPreparation of Reactive and Thermal Stable Hyperbranched Graft Copolymers/ Clay Nanocomposite via ‘Living’ Free Radical Polymerization
Exfoliated poly (Chloromethyl styrene-co-styrene)-g-polyacrylonitryle/organo- modified montmorillonite [P(CMSt-co-St)-g-PAN/O-MMT] nanocomposite was synthesized through solution intercalation method by using atom transfer and nitroxide mediated radical polymerization. At first, poly (chloromethyl styrene-costyrene) copolymer was synthesized by nitroxide - mediated “living” free radical polyme...
متن کاملThe electrospinning of the copolymer of styrene and butyl acrylate for its application as oil absorbent
Electrospun polystyrene materials have been employed as oil absorbents, but they have visible drawbacks such as poor strength at low temperature and unreliable integrity because of brittleness and insufficient cohesive force among fibers. Butyl acrylate can polymerize into flexible chains, and its polymer can be used as elastomer and adhesive material. Thereby it is possible to obtain the mater...
متن کامل